

Issued by Air Liquide Laboratories Approved for distribution by Shigeyoshi Nozawa and Benjamin Jurcik RESEARCH REPORT COMMUNICATION Title: Hydrogen supply and energy storage through the reaction of light hydrides: Technical assessment	Report: R1106 Date: May 25, 2006 		
Nb.of Pages: 46 (Excluding this page) CONSEQUENCES: Information O Patent ● Publication NATURE: Bibliography O Theoretical ● Experimental TYPE OF INFO.: Strategic O Technical ● Mere Information C KEY WORDS: hydrogen, storage, lithium, chemical hydrides, LiH, LiOH, fuel cell			

Distribution List

Dpt Name	F/A	Dpt Name	F/A
ALL:		CRC:	
Mr. B. JURCIK	F	Mr. Y. BOURHIS	Α
Mr S. NOZAWA	F	Mr T. JACKSIER	Α
Circulation	F	MEDAL	
CRCD:		Mr. P. TESSIER	F
Mr. J. PERRIN	F	Mr. P. COIGNET	F
Mr. R. SOULA	Α	Mr G. FLEMING	Α
Ms. K. BARRAL	F	ALJ:	
Ms S. PREGASSAME	F	Mr. J.P. DUPRIEU	Α
Ms. A. CUNI	F	Mr. P. VIENNOT	Α
Ms R. IMBAULT	F	Mr. Yasuo SATO	Α
Mr. S. MOREAU	F	JAG:	
Mr. M. DAVID	Α	Mr. J.F. LECOUFFE	Α
Mr M. LEFEBVRE	F	Mr. T. MANABE	F
Mr. C. CLAEYS	Α	Ms M. YAMAUCHI	F
DRD:		Mr. JB. DELLON	Α
Mr. F. JACKOW	Α	Mr. G. SALZGEBER	Α
Mr. P. QUEILLE	F	DTA:	
Mr. J.Y. THONNELIER	F	Mr. G. MAROT	Α
AXANE:		Mr. A. RAVEX	Α
Mr. P. SANGLAN	Α	Mr. L. ALLIDIERES	F
Mr. F. TOUVARD	F	DSPI:	
Mr. E. CLAUDE	F	Mr. J. VESIN	F
CTAS:		Mr. C. CRONIN	Α
Mr. G. CANNET	Α	IC	
Mr. A. DENIS	F	Mr. A. LEON	Α
DICI		Mr. D. BERNAL	Α
F. BARTH	Α		
P. ANDREANI	Α		

Hydrogen supply and energy storage through the reaction of light hydrides: Technical assessment,

Thomas Laude

ABSTRACT

This report provides a technical assessment of different chemicals for a system that offers both hydrogen supply and energy storage, as needed for fuel cell applications. The technologies considered are the hydrogen release by the reaction of light-hydrides (ex: LiH + H₂O -> H₂ + LiOH), and the energy filling by an efficient electrochemical recycling of the by-products. To identify the most promising candidate systems, we studied the thermo-chemical and physical data.

For the reactive release of H_2 , we considered the reaction of H_2O with strong reductors: LiH, Li, NaH, Na, NaBH₄, MgH₂, BeH₂ and AlH₃. All hydrides showed potential for an excellent storage density, competitive to that of gasoline, and acceptable energy efficiency on release (in the order of 70%). The metals (Li and Na) had lower potential for both density and efficiency (by about a factor two). We also considered replacing H_2O with NH₃ in the release reaction. LiH + NH₃ reaction may provide excellent release efficiency thanks to endothermicity and to good storage density. However, this system suffers of NH₃ storage requirements and probably of low reactivity.

For an energy efficient recycling of the hydroxide, we considered melted salt electrolysis. Only LiOH and NaOH may be recycled in this way because other hydroxides do not have a stable liquid phase. We conclude that for a recycled system, LiH is favoured for its high storage density, but NaH is potentially cheaper to cycle thanks to better energy efficiency. We propose a simple design for the supply system that could allow both releasing and filling in the same closed box, with heat recycling on filling. The system is preferably filled by hydrogen and electricity, but may also be filled by electricity only.

We also led a cost comparison. We conclude that, for chemically-cycled storage, lithium has an over-cost of +22% compared to sodium due to higher heat loss on release, provided that lithium could be cycled over 100 times. For storage systems without chemical recycling, the most economical candidates are AlH₃ and NaH, for which the metal hydride cost is estimated approximately 7 euro per kg of H₂ stored. For large scale usage, a chemical recycling will be necessary.

Based upon the review of the different systems, the LiH system with electrolysis as a regeneration step appears to be the most promising system, in particular for fuel cell applications where high-density and reasonable energy cost is needed, like long range distribution or automotive. The system has been very lightly studied in the literature, and only using a different regeneration step than the one presented here. We also conclude that a similar system based on sodium is a viable candidate for some applications thanks to its lower energy cost, and although it offers lower energy density.

As a first step, we propose to evaluate the feasibility of the LiOH and NaOH electrolyses and to measure the associated energetical and chemical efficiencies experimentally. Based on the

success of this first step, we could then evaluate the total cyclability of the reactions, and finally develop a prototype system.

In a more remote future, we expect additional developments of the technology. The exothermal release could be coupled with an endothermic release, to improve the overall energy efficiency. The system could be coupled to a fuel cell to offer an electricity-to-electricity storage solution. Energy density could be higher by several orders compared to existing electrical storage devices, and at acceptable energy efficiency (say 30%). Finally, similar $AlH_3 + H_2O$, and $NaH + H_2O$ reactions could be used in a non-chemically-recycled hydrogen supply, where metals would be discarded after use. This would provide a simple and high density solution in some niche applications where higher energy cost can be afforded.

1. Introduction

One of the major technical challenges to be overcome for the large spread utilization of hydrogen fuel cells for applications such as transportation or general consumer use is to develop efficient and safe storage technology. High pressure hydrogen cylinders (up to 700 bar) are under development but still suffer from a relatively low energy storage density. Liquid hydrogen systems must consider the boil-off from both a safety and an efficiency perspective. Hydrogen storage systems based on the decomposition of metal hydrides have a mass storage limited to about 2%mass (mass of hydrogen to metal).

An alternative more recently studied is the energy storage in light hydrides and the hydrogen release from their reaction with water. (It should noticed that reactive chemical supply is different from direct storage of hydrogen, in that it enables storing the energy from non-hydrogen sources, in particular other chemicals, electricity or heat, and to generate hydrogen only in the final release step. Hence, energy storage and hydrogen supply are separated functions.) This offers a high density of energy storage from both a mass and volume perspectives. Such systems have proven feasible, and in particular with sodium borohydride (NaBH₄), but the hydrides have also proven expensive to produce. For this reason, in this report, we mostly consider light hydrides that have the potential to be recycled in an energy efficient way, typically by electrolysis, or at least that are cheap to produce.

The qualities of a hydrogen supply and energy storage system are firstly storage density and cost. Energy density should be high, both for mass and volume. Cost should be low, considering both the materials used for the storage, but also the efficiency of the system when filling, releasing and over storage time. Then, energy input (hydrogen, electricity, heat or chemicals) should be cheap. Preferably, all chemicals produced apart from hydrogen should be recyclable, to reduce chemical cost (and waste). Finally, the system itself should be inexpensive while providing means for acceptable safety level. For a recyclable chemical storage, as considered here, the global cost is firstly determined by the efficiency factors on filling and on release.

In addition to these factors, the environmental impact should be low. The storage should be easy to use, if possible avoiding extensive external re-treatments. The hydrogen produced should be sufficiently pure for the fuel cell and with reliable flow.

The following report focuses on a hydrogen supply system for a fuel cell using reactive release of type $AH_x + BH_y \rightarrow H_2 + ABH_z$, where A and B are light elements (period 2 and 3 of element table) and where ABH_z can be recycled back to the reactants. Such reaction may be exothermic or endothermic. This is different from more common storage with decomposition release $AH_x \rightarrow x/2 H_2 + A$, which is always endothermic.

Obviously, water is a preferable reactant because it can be recycled from the fuel cell. Water is also preferable because it does not involve additional elements than those in the fuel cell. Therefore, most release reactions considered here are of type $H_2O + BH_y \rightarrow H_2 + B(OH)_z$. However, we also consider non-H₂O reactions, in particular NH₃ based reactions.

The front running release reaction studied here is $LiH + H_2O \rightarrow H_2 + LiOH$. Other reactions can be considered as a variation from this one:

- Li instead of LiH
- ▶ NaH, Na and NaBH₄ instead of LiH
- ➢ MgH₂, BeH₂ instead of LiH
- ➢ AlH₃ instead of LiH
- \blacktriangleright NH₃ instead of H₂O

For each of these chemical families, we considered the thermodynamics of the different steps in the cycle, e.g. the release (H₂ release by reaction of the metal hydride with either H₂O or NH₃), and the filling (re-generation of the hydride from the by-product of the release step). Then the ideal energy efficiency was estimated for the different systems considering heat (enthalpy) losses. (For this report, it may be useful to memorize the enthalpy of combustion of hydrogen H₂ + $1/2O_2$ -> H₂Oliq: 286 kJ/mol at 20C.)

Then, we estimated the ideal storage density, not considering the mass of water when it can be recycled from the fuel cell. [For simplification we considered that one H₂O molecule can be recycled for one H₂ molecule stored. A more realistic figure is probably around 90-95% (see annex).] Also, we considered no voids in powders (chemical volume as liquid) or system volume, so that volumetric density obtained should only be seen as an ideal maximal value. Examples are given for a 7kg H₂ supply system which corresponds to a car application (7kg hydrogen corresponds to ~ 57 liters of gasoline, assuming that a hydrogen fuel cell with an electric motor enables twice the energy efficiency of a gasoline motor) but is not limited to that dimension.

Finally, we considered the technical feasibility of the systems, taking in account the Hydrogen storage through the reaction of light hydrides: Technical assessment 4 Thomas Laude, ALL

requirements of the materials at temperatures and other conditions along the cycle.

2. How we select the reactions

2.1. Available reactions

Apart from obvious H_2O , the choice of reactants is limited once we consider the following requirements:

- Mass ratio of released H₂ to carried compounds should be high, at start and at end of the reaction
- The number of elements involved should be limited for recycling (monoatomic and diatomic compounds are preferable to triatomic compounds).
- Both reactants should be stored as a liquid or a solid (preferably at 1 bar, and preferably within the reactor), for high volumetric density
- Reactants should not be both solids (preferably liquids) for reactivity and handling considerations
- > Final product should not cover reactants and impede reaction
- ➢ Final product should be recyclable in energy efficient way
- Reactant cost should be low

To have a simple triatomic chemistry, we consider reaction between a hydride (AH_x) and another compound that do not bring more than 1 additional element (B) to the system (a pure compound or another hydride). Gas being cumbersome for storage, we favour a reaction liquid + solid, or liquid + liquid. So, the first step is to select a liquid hydride (there is no liquid among pure light elements).

Available Hydrides

The choice for liquid hydrides is limited:

• HF is excluded for safety.

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

- Hydrocarbons suffer of isoelectronegativity of H and C (ex: Burning leads to both oxide). The reaction of H_2O + hydrocarbon -> H_2 + CO_2 (reforming) is possible but endothermic and produces CO_2 .
- Higher B and Si hydrides are interesting but fall out of the scope of this report, for their complexity.

For these reasons, we mostly consider the reactions of H_2O with solid (and electropositive) elements or their diatomic hydrides. But we will also consider one reaction with a triatomic hydride (NaBH₄ + H₂O), and two gas + solid reactions (2Li + 2/3NH₃(g) -> H₂ + 2/3Li₃N and LiH + 1/3NH₃ (g) -> H₂ + 1/3Li₃N).

Electronegativity of the elements, as obtained from http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/E/Electronegativity.html

- 2.2. Release reactions with water
- 2.2.1. Reactions of elements with water:

Only, the strong reductor elements are available for water reduction, with H₂ release:

- $2Li + 2H_2O \rightarrow H_2 + 2LiOH (\Delta G = -404kJ/mol)$
- $2Na + 2 H_2O \rightarrow H_2 + 2NaOH (\Delta G = -285kJ/mol)$
- $Mg + 2 H_2O \rightarrow H_2 + Mg(OH)_2 (\Delta G = -359kJ/mol)$
- Be + 2 H₂O -> H₂ + Be(OH)₂ (Δ G = -341kJ/mol)
- $2/3Al + 2 H_2O \rightarrow H_2 + 2/3Al(OH)_3$ (ΔG no data)
- $2/3B + 2 H_2O \rightarrow H_2 + 2/3B(OH)_3$ (ΔG no data)

Note: All reaction involve simple red/ox reactions of type $2/nM + 2H^+ \rightarrow H_2 + 2/nM^{n+}$ (respective electrochemical potential of 3.04, 2.71, 2.37, 1.85, 1.662, 0.870 V, for Li, Na, Mg, Be, Al, B).

Although Li to Be reactions are thermodynamically viable, only Li and Na reactions have been reported experimentally. The reason is probably the formation of an insoluble hydroxide layer (and oxide if exposed to air) on the metal that inhibits the reaction for all elements except Na and Li (see hydroxide solubility graph below).

2.2.2. Reactions of diatomic hydrides with water

Again, the strong reductor hydrides are available for water reduction, with H_2 release. Note that H_2 is released from the water and not from the hydride. The resulting hydroxide may decompose to the oxide if unstable. This is the case at ambient for silicon (Si(OH)4 -> SiO₂ +2 H₂O).

- $\text{LiH} + \text{H}_2\text{O} \rightarrow \text{H}_2 + \text{LiOH} (\Delta \text{G} = -133 \text{kJ/mol})$
- NaH + H₂O -> H₂+NaOH ($\Delta G = -109$ kJ/mol)
- $1/2Mg H_2 + H_2O -> H_2 + 1/2Mg(OH)2 (\Delta G = -161kJ/mol)$
- $1/2Be H_2 + H_2O -> H_2 + 1/2Be(OH)_2 (\Delta G = -149kJ/mol)$
- $1/3AlH_3 + H_2O -> H_2 + 1/3Al(OH)_3 (\Delta G \text{ no data})$
- $1/6B_2H_6 + H_2O \rightarrow H_2 + 1/3B(OH)_3 (\Delta G \text{ no data})$
- $1/4SiH_4 + 1/2 H_2O \rightarrow H_2 + 1/4SiO_2 (\Delta G \text{ no data})$

Note: Again, these reactions involve a simple red/ox reactions, but of type: H-+H+->H₂.

In this case, all above reactions are reported experimentally, although SiH_4 one is reported slow. As in the previous case, solid hydrides (all except for B_2H_6 and SiH_4) reaction speed probably depends on solubility of the hydroxide in water.

2.3. Recycling the hydroxide by melted salt electrolysis

To recycle the hydroxide obtained after the hydrogen release reaction, melted salt electrolysis is considered as an energy efficient process. As the electrolysis reaction creates molecules and breaks bonds, the entropy of the reaction system increases and may be endothermic in nature. As a result, the thermal efficiency of the electrolysis reaction may be high. Endothermicity reduces heat losses from Joule effect, hence increase energy efficiency. The portion of heat absorbed to total electrical input increases with temperature. (This principle is well known for hot water electrolysis for instance.)

Exemple: electrolysis of melted LiOH:

Half reactions: $Li + e \rightarrow Li$ and $OH - e \rightarrow 1/2 H_2Ogas + 1/4O_2$ Global reaction: $LiOH \rightarrow Li + 1/2 H_2Ogas + 1/4O_2$ (Enthalpy at room T: ~+366 kJ/mol)

For such electrolysis, high temperature is necessary both for energy efficiency and to melt the hydroxide. However, as the temperature rises, the hydroxide tends to decompose to the oxide releasing water. Oxides have a very high melting point, which makes them impractical for melted salt electrolysis. As a result, and as shown in the graph below, only Na and Li may be compatible with an electrolysis of the hydroxide. NaOH is liquid in the range 318-1390C. LiOH is liquid in the range 450-924C.

Note: for NaOH and Be(OH)₂, there is no data for decomposition temperature. However for NaOH,

the stability is known up to the boiling temperature, and for $Be(OH)_2$, the stability can be expected very low as the free energy for decomposition reaction is already negative in standard conditions (graph below).

Note: G of different reactions is not strictly comparable, but the reactions being similar, it gives a hint of the stability/decomposition point

Finally, it should be understood that the electrolysis of NaOH and of LiOH and their efficiencies are still to be confirmed experimentally. Today, the literature on NaOH electrolysis is scarce, and the literature on LiOH electrolysis is almost inexistent. Hopefully, this is because such processes had no commercial interest up to now.

Note 1: recycling the hydroxide by thermo- reduction?:

Safe hydrogen LLC reported the following reaction for LiOH (from 1100C with CO removal): $LiOH + C \rightarrow Li + CO + 1/2 H_2$ [This probably involves a decomposition step: $2LiOH \rightarrow Li_2O + H_2O$] Additional hydrogen is collected from $CO + H_2O$ gas $-> CO_2 + H_2$ reaction This seems unpractical because:

- > Temperature is high
- > The reaction burns C to produce CO_2
- Feasibility is uncertain
- > The system is complex
- > The reaction produces more H_2 that it can later store

(PowerBall Technologies LLC reported a similar process for NaOH with NaOH + CH₄ reaction)

Note 2: Recycling the hydroxide by aqueous electrolysis?

LiOH and NaOH are soluble in water (dissolution enthalpy of -14 kJ/mol for LiOH). However aqueous electrolysis is not possible because reduced metal would react with water to give H_2 . The

global reaction would be an electrolysis of water, with heat losses.

3. Li/O/H based systems 3.1. Generalities

Stable compounds of Li, O and H: Li, LiOH, Li₂O, (Li2O₂,) O₂, H₂O, H₂

Li melting (C)	180
LiH melting (C)	689
LiOH melting (C)	450
LiOH decomposition (C)	924

A closed system with only 3 atoms (Li/O/H) involves a limited number of compounds, and hence is expected to cause few side reactions. This is important for hydrogen purity and for cyclability. While not tested yet, LiOH is expected to be cyclable because it is stable to the oxide. Also, although LiH can reduce only one H₂O molecule, Li is very light, so LiH provides a reasonably good storage density. Finally, the reactivity on H₂ release is expected sufficient because of the high solubility of LiOH and because of the electropositivity of Li.

However, lithium has drawbacks too. In particular, LiOH is sensitive to atmospheric CO_2 to forms lithium carbonate impurities. Also Li and LiH are sensitive to atmospheric moisture and to oxygen. This may cause energy losses on storage. For these reasons, a closed and well sealed system is preferred to a fuel-like commodity.

We will see that a Li/O/H based system may be refilled directly, either by electricity and heat (Li storage), or more efficiently by electricity, heat and hydrogen (LiH storage)

<u>Known actors on similar reactions:</u> Safe hydrogen LLC [LiH slurry (mix with oil) storage, LiH+ H₂O release, reduction recycling with C at 1100C]

3.2. Reaction pathway

 $Li + H_2O$, with electrolysis and enthalpy steps

Energetically, the H_2 supply system (release + electrolysis + condensation) is only filled with electricity (and heat) during the electrolysis.

Chemically, the global system (including the fuel cell) is chemically closed (O_2 may or may not be released to air during electrolysis). The global reaction is **electricity (+heat)** --> **electricity (+heat)**. It is therefore comparable to a battery, in principle.

LiH + H₂O, with electrolysis and enthalpy steps

Energetically, the H_2 supply system (release + electrolysis + condensation + hydrogenation) is filled both by H_2 and by electricity (and heat) during electrolysis.

Chemically, the global system (including the fuel) is not chemically closed. The global reaction is $1/2 H_2 + 1/4O_2 + \text{electricity}$ (+heat) --> $1/2 H_2Oliq + \text{electricity}$ (+heat). Hence this system is in between a battery, and a fuel cell with storage, in principle.

3.3. Energy Efficiency (estimated on enthalpy, H, cycle)

The energy losses and gains in the system can be discussed from the variations of enthalpy (Δ H) for the compounds considered at same stoichiometry for each step. Enthalpy is directly interpretable as the energy of the system. In this first approach, we consider only standard conditions. This is not really correct, in particular for the electrolysis which is led at high temperatures.

For the spontaneous steps, like hydrogenation or condensation, enthalpy difference is simply equal to the heat released.

For the fuel cell step, the enthalpy difference is the total energy given by the system. One part is given off as heat, and one part as useful electricity. The maximal electrical energy available considering entropy requirement is the difference in free energy, ΔG . However commercial fuel only produce about 50% of ΔG , or about 40% of ΔH , as electricity.

For the electrolytic step, the enthalpy difference is the total energy absorbed by the system. One part is absorbed as electricity, and one part is absorbed as heat from environment. Again, the minimal electrical energy to be input is the difference in free energy, ΔG (about 89% of ΔH for LiOH electrolysis at room temperature). Hence the electrolysis efficiency can theoretically be higher than 100% (up to 111% for LiOH at room temperature). In addition, this efficiency is expected to increase with temperature. However, a realistic estimation of the efficiency is difficult. It depends on heat loss from the system and on electrolysis temperature. For simplification we usually suppose 100% efficiency on the electrolytic step.

 $Li + H_2O$, with electrolysis (Li₂O3H4 stoichiometry)

[We indicate the absolute values for enthalpy of formation and free energy of formation, and (in percent) the ratio of reaction enthalpy to energy input.]

The main loss in the storage system is due to hydrogen release reaction (54.7% relative to total energy input). Electrolysis is expected efficient. However, water condensation causes about 6% heat loss (recycling this heat from H_2O/O_2 gas exhaust is not possible in this case). Additional heat losses from the system exist but are difficult to quantify.

Li + H ₂ O efficiency (enthalpy based)			
Input (kJ/mol)	Filled (kJ/mol)		
727.970	683.970		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
44.000	398.140		
Filling efficiency	Release efficiency	Total efficiency	
0.940	0.418	0.393	

Note: "filling" includes electrolysis and water condensation. "release" includes only the hydrogen release step.

<u>LiH + H₂O, with electrolysis</u> (stoichiometry LiO_2H_3)

The main losses in the storage system are now:

- $Li + 1/2 H_2 \rightarrow LiH (18\% relative to total energy input)$
- $LiH + H_2O \rightarrow LiOH + H_2$ (21% relative to total energy input)

In addition, and as in the previous case, there are losses from water condensation (4%) and from the system (difficult to quantify).

LiH + H ₂ O, Non heat-recycled efficiency (enthalpy based)			
Input (kJ/mol)	Filled (kJ/mol)		
506.900	394.400		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
112.500	108.570		
Filling efficiency	Release efficiency	Total efficiency	
0.778	0.725	0.564	

Note: "filling" includes electrolysis, water condensation, and hydrogenation. "release" includes only the hydrogen release step.

For the LiH system, it may be possible recycle part of heat lost by hydrogenation and water condensation to feed the endothermic electrolysis. This supposes that all steps in the filling (electrolysis + condensation + hydrogenation) are performed simultaneously (see part 3.5 for feasability). Hopefully, we may get close to 100% energy efficiency on filling (at high temperature).

LiH + H ₂ O, Heat-recycled efficiency (enthalpy based)			
Input (kJ/mol)	Filled (kJ/mol)		
394.400	394.400		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
0.000	108.570		
Filling efficiency	Release efficiency	Total efficiency	
1.000	0.725	0.725	

3.4 Storage densities

Storage density of LiH is excellent, from 25.4% mass at reaction start to 8.4% mass at reaction end.

LiH is far superior to Li for storage density. The main reason is that LiH storage can provide one H_2 molecule for one H_2O molecule consumed, so that no storage of water is necessary. In contrast, the Li storage can provide only one H_2 molecule for two H_2O molecules consumed. Hence, half of the water must be stored.

2Li + 2 H ₂ Oliq -> H ₂ +2Li(OH) Storage Densities			
H ₂ Mass ratio at start [H ₂ /(2Li+ H ₂ O)]	0.063	H_2 Mass ratio at end [$H_2/(2LiOH)$]	0.042
MJ/kg	8.961	MJ/kg	5.968
MJ/l	6.494	MJ/l	8.713
ex: To store 7kg H_2 , Li and H_2O at start	110.765	Li(OH) at end (kg)	166.324
(kg)			
Vol at start as liquid (l)	152.833	LiOH Vol at end as liquid (l)	113.921
Li mass fraction at start (kg)	48.206	H_2O mass fraction at start (kg)	62.559
Li vol fraction at start (l)	90.274	H_2O vol fraction at start (l)	62.559

LiH + H ₂ Oliq -> H ₂ +Li(OH) Storage Densities			
H_2 Mass ratio at start [$H_2/(LiH)$]	0.254	H_2 Mass ratio at end [H ₂ /LiOH]	0.084
MJ/kg	35.958	MJ/kg	11.935
MJ/l	29.486	MJ/l	17.426
ex: To store 7kg H_2 , LiH at start (kg)	27.603	LiOH at end (kg)	83.162
Vol at start as liquid (l)	33.662	LiOH Vol at end as liquid (l)	56.960
Li mass fraction (kg)	24.103		

3.5. Technical feasibility

Requirement for the electrolyser

- Resistance to 450C
- Resistance to highly basic LiOH

- Resistance to O₂, H₂O and H₂ corrosion
- Lightness
- Cheapness
- Mechanically resistance
- Well sealed

The materials commonly used in melted salt hydrolysis are graphite and steel (carbon coated).

Design of the electrolyser

At the anode, H_2O and O_2 should be removed as gas exhaust. (The system should forbid that Li recombines with H_2O to give H_2 and LiOH. This would cause unecessary heat loss.)

At the cathode, and in the $LiH + H_2O$ system, it is favourable to have the electrolysis and the H_2 filling simultaneously, because:

- 1. Li -> LiH reaction heat could be used to warm the system, and feed the endothermic electrolysis.
- 2. Heat loss from water condensation could be transferred to H_2 input by thermal exchanger.
- 3. The heat delivered may be sufficient to melt LiOH without additional heating device.

Note: At high temperature, a reaction $LiOH + H_2 \rightarrow LiH + H_2Ogas$ may become spontaneous. This is to be checked. The contact surface between electrode and H_2 may play a role too by ionisation on the anode $H_2 \rightarrow 2H$, then LiOH + H- $\rightarrow LiH + OH$ -

The figures below gives an example of a primitive design:

Chemical flows are indicated in blue for release, and in black for filling. Tank and cathode materials may be carbon coated steel.

It is important to notice that the LiH system can work as a Li system and will do partially, when the hydrogenation reaction is incomplete.

4. Na/O/H based systems

4.1. Generalities

Stable compounds: Na, NaOH, Na₂O, (Na₂O₂,) O₂, H₂O, H₂

Na melting (C)	98
NaH decomposition (C)	425
NaOH melting (C)	318
NaOH decomposition (C)	1390

The Na/O/H system is very similar to the Li system. The advantages of Na compared to Li are:

- a higher energy efficiency on release thanks to a lower heat release during hydration
- a higher energy efficiency on filling, thanks to a lower heat release during hydrogenation, and to a lower electrolytic step
- a more reactive release thanks a higher water solubility of hydroxide and to a higher electropositivity
- A more practical electrolysis thanks to a larger range of temperatures where NaOH is liquid.

However, Na suffers from lower energy density, being 3 times heavier than Li.

<u>Known actors on similar reactions:</u> PowerBall technologies LLC [NaH in plastic ball storage, NaH+ H₂O release, NaOH reduction by CH₄ at 980C]

4.2 Reaction pathway

Global reaction: electricity (+heat) --> electricity (+heat). Chemically closed system

Global reaction: 1/2 H₂ + $1/4O_2$ + electricity (+heat) --> 1/2 H₂Oliq + electricity (+heat)

4.3. Energy Efficiencies

Na + H ₂ O efficiency			
Input (kJ/mol)	Filled (kJ/mol)		
609.370	565.370		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
44.000	279.540		
Filling efficiency	Release efficiency	Total efficiency	
0.928	0.506	0.469	

NaH + H ₂ O, Non heat-recycled efficiency			
Input (kJ/mol)	Filled (kJ/mol)		
447.600	369.300		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
78.300	83.470		
Filling efficiency	Release efficiency	Total efficiency	
0.825	0.774	0.639	

NaH + H ₂ O, Heat-recycled efficiency			
Input (kJ/mol)	Filled (kJ/mol)		
369.300	369.300		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
0.000	83.470		
Filling efficiency	Release efficiency	Total efficiency	
1.000	0.774	0.774	

4.4. Storage densities

2Na + 2 H ₂ Oliq -> H ₂ +2Na(OH) Storage Densities				
H_2 Mass ratio at start $[H_2/(2Na+H_2O)]$	0.031	H ₂ Mass ratio at end [H ₂ /(2NaOH)]	0.025	
MJ/kg	4.466	MJ/kg	3.573	
MJ/l	4.369	MJ/l	7.611	
ex: To store 7kg H_2 , Na and H_2O at start	222.226	Na(OH) at end (kg)	277.785	
(kg)				
Vol at start as liquid (l)	227.164	NaOH Vol at end as liquid (l)	130.415	
Na mass fraction at start (kg)	159.667	H_2O mass fraction at start (kg)	62.559	
Na vol fraction at start (l)	164.605	H_2O vol fraction at start (l)	62.559	

NaH + H ₂ Oliq -> H ₂ +NaOH Storage Densities			
H ₂ Mass ratio at start [H ₂ /(NaH)]	0.084	H ₂ Mass ratio at end [H ₂ /NaOH]	0.050
MJ/kg	11.911	MJ/kg	7.146
MJ/l	16.627	MJ/l	15.222
ex: To store 7kg H ₂ , NaH at start (kg)	83.334	NaOH at end (kg)	138.892
NaH Vol at start as liquid (l)	59.694	NaOH Vol at end as liquid (l)	65.208
Na mass fraction (kg)	79.834		

4.5. Technical feasibility

Systems are the same as for Li, except that the temperature involved may be different.

5. Na/B/O/H based systems (NaBH₄)

5.1. Generalities

(NaBH₄ is reviewed as there abundant literature. LiBH4 or other similar compounds may be assumed of close behaviour.)

Stable compounds: Na, NaH, NaOH, Na₂O, B, B₂H₆, B(OH)₃, B₂O₃, NaBH₄, (NaB(OH)₄), NaBO₂, H₂O, H₂ (non exhaustive list)

NaBH₄ is interesting for:

- a high storage density
- a high release efficiency thanks to low heat loss on hydration $1/4NaBH_4 + 1/2H_2O \rightarrow H_2 + 4NaBO_2$
- a catalyst-activated release reaction
- a real water recycling rate of 100%, as the release reaction consumes only half a H₂O molecule per H₂ molecule released.

Unfortunately, there is also a major drawback from the fact that NaBO₂ is not easily or efficiency recycled (doubtful cyclability).

In addition:

- The reaction is slow without catalyst. And catalytic activity is impeded by insoluble NaBO₂ deposition on the catalysts.
- The high number of compounds causes side reactions. In particular there is probably the formation of the hydroxides: NaBH₄ + 4 H₂O -> NaOH + B(OH)₃ + 4 H₂

For these reason NaBH₄ is rather a compound for non-recycled storage where high energy cost is no issue.

<u>Known actors</u>: Millenium cell (Aude Cuni at CRCD is currently evaluating NaBH₄ technology as well, so this short review is not meant to be completely comprehensive.)

5.2. Reaction pathway

 $1/4NaBH_4 + 1/2 H_2O \rightarrow H_2 + 4NaBO_2$ is a spontaneous reaction but slow at room temperature. It can be catalyst activated.

Non-recycled synthesis of NaBH₄:

- > NaCl-electrolysis->Na+ H_2 ->NaH+ $B(OCH_3)_3$ -> NaBH₄ (low energetic efficiency)
- > NaOH-electrolysis-> Na+ H_2 -> NaH+B(OCH₃)₃)-> NaBH₄ (millennium cell)

Recycling $NaBO_2$ to $NaBH_4$ is a major difficulty. It is not achieved today, and may never be with the requirement of high energetic efficiency and high purity. The fundamental problem lies in the complexity of a quadri-atomic system. We give below some routes studied at present.

High Temperature reduction (hypothetical reactions):

- NaBO₂ + ROH + CO₂ -> B(OR)₃ + Na₂CO₃; then B(OR)₃ + H₂ -> B₂H₆ + ROH; then B₂H₆ + Na₂CO₃ -> NaBH₄ + CO₂ (millennium cell)
- > $NaBO_2 + 2Mg + 2H_2 \rightarrow NaBH_4 + 2MgO$ (Merit)

Electrolysis (hypothetical reactions):

NaBO₂ + H₂O -> Na + B(OH)₃ + O₂; or NaBO₂ + H₂ + H₂O -> Na +4B(OH)₃ (millennium cell)

NaBH ₄ + H ₂ O efficiency		
Input (kJ/mol)	Filled (kJ/mol)	
non viable	340.015	
Loss on filling (kJ/mol)	Loss on release (kJ/mol)	
non viable	54.185	
Filling efficiency	Release efficiency	Total efficiency
non viable	0.841	non viable

5.3. Storage densities:

1/4NaBH ₄ + 1/2H ₂ Oliq -> H ₂ +1/4NaBO ₂ Storage Densities			
H ₂ Mass ratio at start [H ₂ /(1/4NaBH ₄)]	0.213	H ₂ Mass ratio at end	0.123
		[H ₂ /(1/4NaBO ₂)]	
MJ/kg	30.221	MJ/kg	17.376
MJ/l	32.458	MJ/l	42.815
ex: To store $7kg H_2$, $NaBH_4$ at start (kg)	32.843	$NaBO_2$ at end (kg)	57.122
NaH Vol at start as liquid (l)	30.580	NaOH Vol at end as liquid (l)	23.183
Na mass fraction (kg)	19.958		
B mass fraction	9.385		

6. Higher hydrides (MH₂, MH₃)6.1. Mg/O/H based systems

Stable Compounds: Mg, MgH₂, Mg(OH)₂, MgO, O₂, H₂O, H₂

Magnesium offers a good mass density (MgH₂ can reduce two water molecule. This compensate for the relatively high mass of Mg atom), and volumetric density.

But it suffers from two problems:

- Hydroxide is rather unstable to the oxide. On moderate heating Mg(OH)2 decomposes to MgO + H₂O. MgO can't be melted at low temperatures (melting at 2852C), and therefore melted salt electrolysis is not possible. Atternative "solid oxide membrane" electrolysis at 1200C has been proposed, but the efficiency of the process is uncertain (Safe hydrogen LLC).
- MgH_2 is little soluble in H_2O , hence H_2 release is expected slow or incomplete.

<u>Known actors on similar reactions:</u> Safe hydrogen LLC [MgH₂ slurry (mix with oil) storage, MgH₂+ H₂O release, SOM electrolysis recycling]

Reaction pathway and efficiency

(iso-stoichiometry 1/2MgO₂H₃):

Н°

MgH ₂ + H ₂ O, Heat-recycled efficiency			
Input (kJ/mol)	Filled (kJ/mol)		
non viable	424.255		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
non viable	138.425		
Filling efficiency	Release efficiency	Total efficiency	
non viable	0.674	non viable	

Storage density

1/2MgH ₂ + H ₂ Oliq -> H ₂ +1/2Mg(OH)2 Storage Densities			
H ₂ Mass ratio at start [H ₂ /(1/2MgH ₂)]	0.153	H ₂ Mass ratio at end	0.069
		$[H_2/(1/2Mg(OH)_2]]$	
MJ/kg	21.719	MJ/kg	9.802
MJ/l	31.492	MJ/l	23.133
ex: To store $7kg H_2$, $Mg H_2$ at start (kg)	45.700	$Mg(OH)_2$ at end (kg)	101.259
Vol at start as liquid (l)	31.517	Vol at end as liquid (l)	42.907
Mg mass fraction (kg)	42.200		

6.2. Be/O/H based systems

Stable Compounds: Be, BeH₂, Be(OH)₂, BeO, O₂, H₂O, H₂

The Be/O/H system is very similar to the Mg/O/H system. But, beryllium being much lighter than magnesium, it enables the highest storage density of all compounds studied here (up to 36% mass!).

However there is an important drawback from the fact that Be compounds are very toxic (carcinogenic).

In addition, beryllium suffers of the same problems than magnesium:

- the hydroxide is instable to the oxide (possibly at room temperature)
- the hydroxide is little soluble

Reaction pathway

The reactions above can be used by replacing Mg with Be, with very little change on energy levels.

BeH ₂ + H ₂ O, Heat-recycled efficiency			
Input (kJ/mol)	Filled (kJ/mol)		
non viable	413.175		
Loss on filling (kJ/mol)	Loss on release (kJ/mol)		
non viable	127.345		
Filling efficiency	Release efficiency	Total efficiency	
non viable	0.692	non viable	

Storage density

1/2BeH ₂ + H ₂ Oliq -> H ₂ +1/2Be(OH) ₂ Storage Densities			
H ₂ Mass ratio at start [H ₂ /(1/2MgH ₂)]	0.366	H ₂ Mass ratio at end	0.094
		$[H_2/(1/2Mg(OH)_2]]$	
MJ/kg	51.837	MJ/kg	13.286
MJ/l	33.002	MJ/l	25.509
ex: To store 7kg H_2 , Be H_2 at start (kg)	19.148	$Be(OH)_2$ at end (kg)	74.707
Vol at start as liquid (l)	30.076	Vol at end as liquid (l)	38.910
Be mass fraction (kg)	15.648		

6.3. Al/O/H based systems

Stable Compounds: Al, AlH₃, Al(OH)₃, AlOOH, Al₂O₃, Al₂O, H₂, H₂O, O₂ (The trivalent character of Al³⁺ causes the existence of an additional compound AlOOH in the system.)

Aluminium offers a good mass storage density (AlH₃ reduces 3 water molecules. This compensate for the relatively high mass of Al atom.) and the best volumetric density of compounds studied here.

The release reaction $1/3AlH_3 + H_2O \rightarrow 1/3Al(OH)_3 + H_2$ is reported. (Al(OH)_3 and ALOOH are insoluble, but on the other hand Al is very electropositive.) But the low stability of the hydroxide may not allow efficient electrolysis, as in the case of Mg

The thermodynamic literature being incomplete for this family (for Al(OH)₃ in particular), we can not make a complete thermodynamic analysis here.

1/3AlH ₃ + H ₂ O -> 1/3Al(OH)3 + H ₂ Storage Densities			
H_2 Mass ratio at start $[H_2/(1/3AlH_3)]$	0.202	H ₂ Mass ratio at end	0.078
		[H ₂ /(1/2Mg(OH) ₂]	
MJ/kg	28.578	MJ/kg	10.993
MJ/l	45.153	MJ/l	26.603
ex: To store $7kg H_2$, AlH_3 at start (kg)	34.732	<i>Al(OH)</i> ₃ at end (kg)	90.291
Vol at start as liquid (l)	21.982	Vol at end as liquid (l)	37.310
Al mass fraction (kg)	31.232		

Storage density

7. Li/N/H based system (non H_2O case)

7.1. Generalities

Stable Compounds: Li, LiH, Li₂NH, LiNH₂, Li₃N, N₂, NH₃, H₂ [N replaces O as the electronegative element of the system. Such a system allows one more compound because of trivalent bounded N^{3-} (compared to divalent O^{2-}): Li₂NH and LiNH₂ instead of LiOH]

LiH melting (C)	680
Li ₃ N melting (C)	840-850
Li_2NH melting (C)	Unknown but in between
LiNH ₂ melting (C)	380-400
NH ₃ standard vapor pressure (bar)	8.8

The system is interesting for:

• a high storage density (even if water is not recycled from the fuel cell)

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

- a low heat loss on filling
- an original 3-steps reversible release/filling
- an endothermic release (may enable on board heat recycle)
- the use of NH₃ that is odour detectable

However it suffers of major drawbacks too:

- One of release steps (Li₂NH + LiH-> H₂ + Li₃N) is probably not viable because the reactants are solids under 400C
- There is need for a separate pressurised NH₃ storage if NH₃ is used as fuel, hence storage density is greatly reduced.

In addition:

- Two gases are involved (H₂ and NH₃), which means that gas separation is needed
- There is a risk of NH₃ pollution in the hydrogen input of the fuel cell
- No humidity can be provided to the hydrogen input of the fuel cell
- Li3N is hydrophilic (Li₃N+3 H₂O->3LiOH+ NH₃, enthalpy -485kJ/mol)

7.2. Reaction pathways

As shown above H_2 storage/release may proceed in many reactions and their combinations. Main are 1 2 3, each releasing or storing one H_2 molecule, hence each with a storage potential of about 5.5% mass. To have a useful storage system, we need 1+2, or 2+3, or better 1+2+3. The reactions

are expected to be reversible because the free energy steps between reactions are modest.

LiH + NH ₃ (steps 1+2+3) efficiency				
Input (kJ/mol)	Filled (kJ/mol)			
1,010.330	857.490			
Loss on filling (kJ/mol)	Loss on release (kJ/mol)			
152.840	0.000			
Filling efficiency	Release efficiency	Total efficiency		
0.849	1.000	0.849		

<u>2Li + 2/3NH₃ (g) -> H₂ + 2/3Li3N</u>

(iso-stoichiometry Li₃NH₃):

These reactions are not really meaningful. It should be noted that all the products above have higher free energy of formation, G°, than their counterpart in the previous LiH system. [To compare with previous system at same stoichiometry, one can add $3/2H_2$ and hence reduce G° of G°($3/2H_2$)=-58.5 kJ/mol.] This means that the reaction between Li and H₂ is always the most favourable thermodynamically. Therefore the filling reactions are not viable. Filling with large amount of H₂ would lead to the LiH system.

In addition, the release reactions are only possible if H_2 does not react directly with Li. This reaction is reduced by:

- Removal of H₂
- Large dominance of NH₃ over Li

7.3. Storage densities

2Li+2/3NH ₃ (g)-> H ₂ +2/3Li ₃ N Storage Densities				
H ₂ Mass ratio at start [H ₂ /(2Li+2/3NH ₃)]	$[H_2/(2Li+2/3NH_3)] \qquad 0.080 H_2 \text{ Mass ratio at end } [H_2/(2/3Li3N)]$		0.087	
MJ/kg	11.326	MJ/kg	12.310	
MJ/l	6.363	MJ/l	16.003	
ex: To store $7kg H_2$, at start (kg)	87.632	Li3N at end (kg)	80.632	
Vol at start as liquid (l)	155.984	Li3N Vol at end as liquid (l)	62.025	
Li mass fraction at start (kg)	48.206	NH ₃ mass fraction at start (kg)	39.426	
Li vol fraction at start (l)	90.274	NH ₃ vol fraction at start (l)	65.710	

LiH+1/3NH ₃ (g)	LiH+1/3NH ₃ (g)-> H ₂ +1/3Li ₃ N Storage Densities											
H ₂ Mass ratio at start	0.148	H_2 Mass ratio at end $[H_2/(1/3Li_3N)]$	0.174									
$[H_2/(LiH+1/3NH_3)]$												
MJ/kg	20.977	MJ/kg	24.620									
MJ/l	14.922	MJ/l	32.005									
ex: To store $7kg$ H ₂ , at start (kg)	47.316	Li3N at end (kg)	40.316									
Vol at start as liquid (l)	66.517	Li3N Vol at end as liquid (l)	31.012									
LiH mass fraction at start (kg)	27.603	NH ₃ mass fraction at start (kg)	19.713									
LiH vol fraction at start (l)	33.662	NH ₃ vol fraction at start (l)	32.855									
Li mass fraction (kg)	24.103											

7.4. Technical feasibility

Important consideration for feasibility of a storage system:

1. If NH_3 is the storage material, NH_3 will be liquefied for high volumetric density. (NH_3 vapour pressure is 8.8 bar in standard conditions) However this storage should be kept from overheating in the reactor as the pressure would quickly rise on heating. (For instance, at 100C NH_3 vapour pressure is 60bar). This will reduce volumetric density.

2. Reactions where two reactants are solid (2A, 3A, black arrows) will proceed slowly and incompletely for the lack of contacts between reactants. This is a major concern. However:

- Starting from 1A, LiH is the only solid compound. If 1A, 2A and 3A are led at once, solids compounds may be in contact naturally.
- For reaction 2A, there is an alternative route through the decomposition of LiNH₂ (right side).

3. Endothermic reactions (1B, 2A and 3A) must be accelerated:

- Reactor temperature must be in the range 200-400C, which causes system difficulties and heat losses
- 1B must be accelerated by removing NH₃ (without removing H₂). We can use condensation or a

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

membrane separator or a water washing.

- 2A and 3A must be accelerated by removing H₂ (without removing NH₃). We can use condensation or a membrane separator. (For 1A separation between H₂ and NH₃ is useful too.)
- Pressure should be low in reactor

4. The release of H_2 is endothermic, so we may recycle heat from the system.

System design

With the consideration above, we can deduce that NH_3 storage and reactor must be separated because there are incompatible requirements for these two steps regarding the temperature and pressure. This constraint consequently reduces the volumetric density by a factor of 2. In addition, we can expect a mass density reduction due to the mass of the compressed gas NH_3 cylinder (estimated as ~ 28kgs for the cylinder to store 7 kgs of NH_3 based upon currently used CGA cylinders for NH_3 delivery).

8. Comparison8.1. Energy density

The chart below presents a comparison of the studied systems from the point of view of energy densities (mass and volume). It also includes high pressure cylinders, liquid hydrogen tanks, metal hydride storage, as well as some hydrocarbon storages. LiH, MgH₂, BeH₂, AlH₃, and NaBH₄ offer a potential of storage density far above existing storage for hydrogen, and may be competitive to gasoline (considering the increased efficiency of a fuel cell with an electric motor to a thermal motor). NaH, LiH + NH₃, Li and Na have a somehow lower potential, but are still competitive with existing hydrogen storage.

Notes: Chemical storage values indicate supplied energy (heat losses on release have been taken into account). The values of volume density of chemical storage are idealistic. We do not take into

account the loss of volume density due to powder voids (volume as liquid) or of the system. Also, the values for mass densities should be corrected by the real loss of water in the fuel cell. For NH_3 reactions (sky blue), both densities may reduced of as much as a factor two, due to the requirements of a NH_3 cylinder storage.

8.2. Storage efficiency

For release efficiency, LiH, MgH₂, BeH₂, AlH₃, and NaBH₄ have similar potentials between 65% and 85%, which are directly related to heat loss on hydration reaction. The release with Li and Na metals is less efficient (40 to 50%). An endothermal release, as in reactions with NH₃, offers of course a much higher efficiency potential, but reactivity is uncertain. The efficiency on release considers the amount of thermal energy that is lost due to the reaction generating the H₂. In other words the release efficiency is:

$$E = \frac{H_2 energy \ produced}{H_2 energy \ produced + enthalpy \ of \ reaction}$$

For filling efficiency, the figures are highly dependent on the possibility and on the efficiency of the melted salt electrolysis. Sodium and lithium compounds are the only compounds where a reasonable efficiency can be foreseen, between 75 and 100%. The feasibility and efficiency of the electrolysis is yet to be demonstrated experimentally however and is one of the critical evaluations necessary for final feasibility.

All in all, the potential energy efficiency of a cyclable storage with NaH or LiH is about 70%, hence an added cost of the storage of about 30%. This is comparable to the energy efficiency of a cryogenic storage for instance.

Considering an application including storage, fuel cell and electric motor (graph below), the total energy efficiency from energy input to mechanical energy could be up to 30% for LiOH and NaOH systems. This is better than usual gasoline combustion engine values of 20%. In other words, to be cost competitive, the input energy (hydrogen + electricity) for the chemical storage should be at most 50% more expensive than gasoline energy.

Notes: Fuel cell efficiency is supposed 40% of the enthalpy of combustion $H_2+1/2O_2$ -> H_2Oliq (286)

kJ/mol at 20C), ie ~50% of the free energy of combustion (Axane FC case). For NaBH₄ + H₂O, Li + NH₃, $MgH_2 + H_2O$, and $BeH_2 + H_2O$, an efficient filling/recycling is not determined. For AlH₃+ H₂O the literature data is incomplete.

8.3. Element prices and availabilities

(Most data is from US geological survey http://minerals.usgs.gov/minerals/pubs/commodity/)

Metal prices (graph below) greatly differ between metals, from the very affordable sodium to the high valued beryllium. Lithium is a relatively expensive metal, roughly 20 times the price of sodium on same weight base.

Notes: Prices are calculated as (price of the compound)x(metal mass/compound mass). The costs of Li, Na and B as raw metals are not meaningful because markets are not significant. We expect cheap electrolytic reprocessing from hydroxide for Li and Na. On the opposite, B is obtained through an expensive reduction process with Mg at high temperature. Quotes as high as 2000\$/kg for amorphous B are found. NaOH (caustic soda) price has been highly fluctuant in last years due to changes in chlorine market.

Metal price is not only determined by natural reserves (graph below), but also by the efficiency of the isolation process. For instance, aluminium is cheap thanks to a relatively efficient electrolytic isolation process from the oxide, but it is not an abundant resource. On the opposite, magnesium is a relatively expensive metal, although it is an abundant resource.

The reserves are very abundant for sodium and magnesium and scarce for beryllium. Again lithium is a relatively rare compound. The known world reserve amount would provide about 20kg of lithium for 1 billion motors (graph below, right scale).

Note: Na from NaCl is not represented but virtually unlimited

To estimate the material cost in a storage system it should also be considered the mass of metal needed for each system. In the graph below, we ponder metal cost with metal mass needed to store 7kg of hydrogen. This considered, NaH and AlH₃ systems offer the cheapest metal cost. The price of lithium in a LiH type system is about 6 times higher than the equivalent price for sodium. The price of NaBH₄ in a NaBH₄ type system is about 8.5 times higher than the equivalent price for sodium.

Note: lithium and sodium costs are based on the hydroxide price. NaB cost is based on the minimal NaBH₄ price as estimated by an Air Liquide internal study of K. Barral. Others costs are based on the raw metal price.

Finally, it should be understood that, for highly cyclable systems, the cost of the metal is negligible compared to the cost of heat losses on the cycle after a number of cycles (graph below). For sodium, the metal cost is negligible if cyclability is above about 10 times. For lithium, the metal cost is negligible if cyclability is above about 100 times.

Note: Input energy cost is rounded to 10 eur per stored hydrogen kg.

If such high cyclability is obtained, the cost difference between systems is mostly determined by the energy efficiency on the cycle. In that case, and with the estimated efficiency of respectively 72% and 77% for LiH and NaH systems (part 8.2), the overcost of lithium to sodium is +22%.

9. Conclusions

	Li + H ₂ O	<i>LiH</i> + <i>H</i> ₂ <i>0</i>	LiH + H ₂ O h-recycl	$Na + H_2O$	NaH + H ₂ O h-recycl	$NaBH_4 + H_2O$	MgH ₂ + H ₂ O h-recycl	BeH ₂ + H ₂ O h-recycl	AlH ₃ + H ₂ O h-recycl	$Li + NH_3$	$LiH + NH_3$
Energy density	~	0	0	۲	ł	0	0	0	0	X	۲
Filling effi.	0	۲	0	0	0	Х	Χ	Χ	?	X	ر
Release effi.	~	0	0	~	0	0	0	0	?	0	0
Input energy	e + h	e + h	e + h	e + h	e + h	NaB	Mg +	Be +	Al +	H ₂ +	H ₂ +
		$+ H_2$	$+ H_2$		$+ H_2$	H_4	H_2	H_2	H_2	h	h
Metal price	~	۲	۲	0	0	۲	0	Χ	0	۲	ر
Security	0	0	0	0	0	0	0	0	0	۲	٢
Environmental impact	0	0	0	0	0	0	0	X	0	0	0

Merits and demerits of each system: O for no-issue yet, X for major issue, ~ minor issue, e for electricity, h for heat

Cycled chemical storage using light metal hydrides offers a potential for storage and transport applications due to the remarkable energy density and reasonable energy efficiency potential (comparable to that of cryogeny for instance). Applications could be various, including long range distribution and automotive. From the present report we conclude that sodium and lithium may have the potential to be cycled with an energy-efficient electrolysis, provided feasibility is demonstrated experimentally. LiH + H₂O and NaH + H₂O based storages with carefully heat recycling could offer an energy efficiency up to about 70%, and an energy density far above that of other hydrogen storage methods. In terms of energy density, lithium potential is about twice that of sodium (for the filled tank). However, sodium is less expensive and more energy efficient on use than lithium. If high cyclability is achieved (over 100 cycles) the over-cost of lithium to sodium would be on the order of 22%.

Chemical hydrides are also an excellent candidate for electrical energy storage with high density and reasonable energy efficiency (up to 30% considering storage and fuel cell losses). $Li + H_2O$ and $Na + H_2O$ type storages coupled to a fuel cell are battery-type systems (refilled from electricity and supplying electricity). LiH and NaH type systems, which offer about twice better energy efficiency and storage density, could also be used as battery, provided they are coupled with an electrolyser to supply hydrogen from electricity. In terms of energy density, such systems could compete with existing electrical storage by several orders, at acceptable energy efficiency. However, the practical feasibility of these systems needs to be verified, and the usage should be compatible with the high temperatures of the energy filling electrolytic step.

On long terms, if cycled systems are proven feasible with cycle energy efficiency mostly limited by heat loss on hydrogen release reaction, it may also be worth considering coupling of an endothermal release with the exothermal release, for further heat recycling and improved efficiency.

Finally, for non-chemically-recyclable storage application, where chemicals could be discarded, and where energy cost is not a major issue (storage for small electronics in particular), $AlH_3 + H_2O$, and $NaH + H_2O$ storage offer interesting perspectives. In both cases, the cost of the metal by direct purchase would be ~ 7eur per kg of H_2 stored (provided low cost production is achieved for sodium). Aluminium potentially offers a far higher storage density than sodium, but the metal should probably be recycled in terms, due to limited world resources.

Related Bibliography

1. Data sources

- Handbook of Chemistry and Physics
- Merks index
- webelements.com
- NIST, webbook.nist.gov
- ➢ www.wikipedia.org

2. Identified intellectual property (in italic not yet granted applications)

2.1 Production of Li, Na and their hydrides by electrolysis

- Hydrogen assisted electrolysis processes (2003) Millenium cell & Air products, WO2003078696 A1 (Claims electrolysis of NaOH in presence of hydrogen at the anode)
- Processes for separating metals from metal salts (2005) Millenium cell (Claims electrolysis of metal borates)
- Methods and apparatus for synthesis of metal hydrides (2005) (Claims production of several metal hydrides. Seems too general => will it fell application?)
- Method of producing lithium (1967), US3344049 A, (Claims one type of Li production by LiCl electrolysis)
- Method for electrochemically producing an alkali metal from an aqueous solution (2002) BASF US6770187 B1 (Claims one type of aqueous electrolysis of LiOH)

2.2 Production of Li, Na and their hydrides by thermo-reduction

- Production of lithium hydride (1944) metal hydrides inc US2408748 A (Claims reduction of several lithium compounds to Li with silicon, and then hydrogenation to LiH. There is also a mention to hydrogen feeding during electrolysis.)
- System for extracting sodium metal from sodium hydroxide with methane as a reductor (1999) Powerball industry inc, US6221310 B1 (Claims system for reduction of NaOH to Na by methane)

2.3 Reactive hydrogen generation

- Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations (2000) Hydro-Quebec US6572836 B1 (Claims mechanical treatment to form nanocrystal, prior to hydration of hydrides)
- Production of hydrogen, acetylene and ammonia gases from lithium reaction with hydrocarbon materials (1980) Westinghouse electric corp. US4317659 A (Claims dried biomass + molten Li => LiH, Li2C2, then hydrolysing. This is an early reference to LiH hydrolysis reaction.)
- Regeneration of hydrogen storage system materials and methods including hydrides and hydroxides (2004), US20050191235 A1 (Claims hydride + hydroxide => oxide + hydrogen reaction), related patents US20050191234 A1 and US20050191232 A1
- Method of hydrogen generation for fuel cell applications and a hydrogen generating system (2001), EP1284922 B1, McGill university (Claims metal hydride + alcohol -> hydrogen reaction)

2.4 Systems for hydrogen generation

- System for generating hydrogen (1997), The Penn state research foundation, US5867978 A (Claims several systems using the hydration of lithium and aluminium hydrides)
- Storage, generation, and use of hydrogen (2002) Safe hydrogen LLC, WO2002066369 A1 (Claims the mix of hydride with carrier liquid and dispersant.)
- System for hydrogen storage and generation (2005), US20060042162 A1 (claims encapsulation of several hydride to supply hydrogen)
- ➢ Hydrogen generator (2004) Lynntech inc, WO2005005311 A2 (Claims catalyst control method in hydration reaction of hydrides)
- A method and apparatus for manufacturing hydrogen generating material, hydrogen generating material, and method and apparatus for generating hydrogen (2004), JP2004107116 A (Claims forming a coil of LiH or NaH for controlled reaction with water)

2.5 Other intellectual property

- Apparatus and method for refining alkaline solution (2002) Tsurumi soda ltd, US6890417 B2 (Claims electrolytic method to refine NaOH solutions)
- Electrolytic production of hydrogen (2002) US20030089620 A1 (Claims production of hydrogen by electrolysis of hydrocarbons in presence of NaOH.)
- Thermally efficient hydrogen storage system (2002) US20030162059 A1 (Claims the combinaison of endothermic and exothermic system to supply hydrogen.)

Other Millenium cell patents: Catalytic reactor for hydrogen generation systems WO2005123576 A2, Composition and processes for synthesizing borohydride compounds US6433129 B1, Differential pressure-driven borohydride based generator WO2003006150 A1, Electrochemical cell and assembly for same WO0182391 A2, Electroconversion cell

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

US6497973 B1, Engine cycle and fuels for same US6250078 B1, Fuel blends for hydrogen generators WO2005065119 A2, High energy density boride batteries WO0019553 A1, Hydrogen gas generation system WO2004071946 A2, Hydrogen generator WO2004041714 A2, Method and apparatus for processing discharged fuel solution from a hydrogen WO2004007354 A1, Method and system for generating hydrogen WO2003084866 A2, Portable hydrogen generator WO2003004145 A1, Process for making a hydrogen generation catalyst US6683025 B2, Processes for synthesizing alkali metal borohydride compounds WO2003051957 A1, Processes for synthesizing borohydride compounds WO2003051957 A1, Processes for synthesizing borohydride compounds WO2002083551 A1, Recycle of discharged sodium borate fuel US6706909 B1, Self regulating hydrogen generation US6939529 B2, System for hydrogen generation WO0151410 A1, Systems and methods for hydrogen generation from solid hydrides WO2005102914 A2, Triborohydride salts as hydrogen storage materials and preparation thereof WO2005065118 A2

3. Scientific literature

3.1 Chemical storage generalities

- Technical and economical evaluation of the various chemical hydrides available for hydrogen storage, Nesshy project deliverable, Avril 2006, A. Cuni Air Liquide
- > Hydrogen gets onboard, RSC chemistry world march 2006, M. Gutowski, T. Autrey
- Filling up with hydrogen, C&EN august 22 2005, M. Jacoby
- An overview of chemical hydrides, B. D. James, Directed technologies inc. ORNL hydrogen storage workshop may 7-8 2003
- Hydrogen storage and delivery by reversible hydrogenation of liquid-phase hydrogen carriers, A.C. Cooper et al., Corporate Science and Technology center and advanced materials division Air Products and Chemicals inc
- > Bottling the hydrogen genie, F.E. Pinkerton and B.G. Wicke, the industrial physicist

3.2 Lithium

3.2.1 Lithium market

- > Lithium, J.A. Ober, US geological survey, mineral commodity summaries, January 2006
- Lithium, J.A. Ober, US geological survey, mineral yearbook, 2004
- Lithium yearend average lithium price, J.A. Ober, US geological survey, 1999
- New lithium hydroxide source hits market, Lube report, L. Tocci, Nov. 30 2005 www.imakenews.com/lng/e_article000494041.cfm?x=b11,0,w

3.2.2 LiH + H2O to LiOH + H2, with organic slurry, and carbon reduction regeneration (Safe hydrogen LLC)

- Could slurry be an answer to hydrogen infrastructure challenge?, Diesel Progress north American edition Nov. 2003, B. Siuru (Safe hydrogen LLC)
- Hydrogen transmission/storage with a metal hydride-organic slurry and advanced chemical hydride/hydrogen for PEMFC vehicules, proceed. of the 2000 US DOE hydrogen program review, A. McClaine, R.W. Breault, C. Larsen, R. Konduri, J. Rolfe, F. Becker, G. Miskolcsy, Thermo technologies a thermo electron company (ex Thermo Power Corporation?)
- Technical assessment and analysis of hydrogen R&D projects, Proceedings of the 1999 US DOE hydrogen program review, E.G. Skolnik, J.P. Dipietro, and Z.U.Haq, Energetics incorporated
- Hydrogen transmission/storage with a metal hydride/organic slurry, proceed. of the 1998 US DOE hydrogen program review, R.W. Breault, J. Rolfe, and A. McClaine, Thermo Power Corporation

3.2.3 LiOH electrolysis

Toward new technologies for the production of lithium, G.J. Kipouros and D.R. Sadoway, JOM May 1998 (include one mention to LiOH electrolysis)

3.2.4 Lithium nitride storage

- Interaction of hydrogen with metal nitrides and imides, P. Chen et al., Nature, vol 420, 21 nov. 2002
- Mechanism of novel reaction reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system, T. Ichikawa et al., J. Phys. Chem. B, 108 (23), 7887-7892, 2004
- Ultrafast reaction between LiH and NH3 during H2 storage in Li3N, Y.H.Hu and E. Ruckenstein, The journal of phys chem. A, 107, 46, (nov. 20 2003)
- Lithium nitride based materials for hydrogen storage, L.L. Shaw et al., 2005 DOE hydrogen program review (powerpoint document)

3.2.5 LiBH4 storage

- Hydrogen generation by hydrolysis reaction of lithium borohydride, Y. Kojima, et al., International journal of hydrogen energy 29 1213-1217 (2004)
- Hydrogen purification and storage using lithium borohydride, Nasa project statement of work 2003-2004, C.A. Linkous, florida energy center

3.2.6 Lithium others

- LiH to Li (no mistake) by electrolysis www.chemguide.co.uk/inorganic/group1/compounds.html, J. Clark 2005
- Carbon dioxide control: lithium hydroxide, E. Atwater (1996), oregonstate.edu/~atwaterj/lioh.html

3.3 Sodium

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

3.3.1 Sodium Market

- Soda ash (Na2CO3), D. Kostick, US geological survey, mineral commodity summaries, January 2006
- Soda ash, D. Kostick, US geological survey, mineral yearbook, 2004
- Salt (NaCl), D. Kostick, US geological survey, mineral commodity summaries, January 2006
- Salt (NaCl), D. Kostick, US geological survey, mineral yearbook, 2004
- Caustic soda: outlook for Asia, R.V. SantenACTED Pty Ltd report (explain volatility in NaOH market)
- 3.3.2 NaH + H2O to NaOH + H2 and regeneration by methane reduction (Powerbal LLC)
- Analysis of the sodium hydride-based hydrogen storage ystem being developed by PowerBall Technologies, LLC, prepared for US DOE, J.P. Dipietro and E.G. Skolnik, Energetics incorporated (oct 29 1999)
- **3.3.3 Hydrogen assisted electrolysis of NaOH** (also see intellectual property of Millenium Cell inc)
- Low-cost off board regeneration of sodium borohydride, DOE hydrogen program, FY 2004 progress report III.B.1, Y. Wu, M. T. Kelly, J. V. Ortega, Millenium cell inc.
- Process for the regeneration of sodium borate to sodium borohydride for use as a hydrogen storage source, Y. Wu, Millenium cell inc., May 24 2005
- Make your own sodium, N. Stanley (internet post)

3.3.4 NaBH4 storage

- Hydrogen storage via sodium borohydride, current status, barriers, and R&D roadmap, Y. Wu, April 2003, millennium cell inc.
- NaBH4 technico-economical assessment (logistic & system), K. Barral, doc ref 238-2004
- Nesshy, work package 4 "chemical hydrides", Air liquide, kick off meeting Athens, January 12th 2005

3.4 Magnesium

3.4.1 Magnesium Market

- Magnesium compounds, D.A. Kramer, US geological survey, mineral commodity summaries, 2006
- Magnesium compounds, D.A. Kramer, US geological survey, mineral yearbook, 2004
- Magnesium metal, D.A. Kramer, US geological survey, mineral commodity summaries, 2006

3.4.2 MgH2 + H2O to Mg(OH)2 + H2O and SOM electrolytic regeneration

- Chemical hydride slurry for hydrogen production and storage, 2004 DOE program review, A. W. McClaine, Safe Hydrogen LLC, 25 May 2004 (powerpoint)
- Chemical hydride slurry for hydrogen production and storage, DOE 2003 progress report, A.W. McClaine
- Emerging SOM technology for the green synthesis of metals from oxides, U.B. Pal, D.E. Wooley and G.B. Kenney, JOM October 2001
- Magnesium electrolytic production process, G. Shekhovtsov et al., Magnesium technology 2000
- New process produces large volumes of hydrogen with MgH2, Japan chemical week, fev 16 2006, p. 9

3.5 Aluminium

3.5.1 Aluminium Market

- Aluminum, P.A. Plunkert, US geological survey, mineral commodity summaries, 2006
- Aluminum, P.A. Plunkert, D.A. Kramer, US geological survey, mineral yearbook, 2004
- Abrasive manufactured (Al2O3), D.W. Olson, US geological survey, mineral commodity summaries, 2006
- Abrasive manufactured (Al2O3), D.W. Olson, US geological survey, mineral yearbook, 2004

3.5.2 AlH3 + 3H2O to Al(OH)3 + 3H2

Maxell develops fuel cells utilizing reaction of aluminium and water for hydrogen generation, report **Beryllium**

- Beryllium, K.B. Shedd, US geological survey, mineral commodity summaries, 2006
- Beryllium, K.B. Shedd, US geological survey, mineral yearbook, 2004

3.6 Other chemical storage

- > NaSi and sodium silica gel, www.signachem.com
- > High silanes, Y. Ju, K. McManus, Aerospace America December 2005

Annex: How much water can be recycled from a fuel cell?

Knowing that water carried through a fuel cell system is proportional to water partial pressure, noting VP1 vapor pressure in the fuel cell, VP0 outside, VP2 in a cool condenser on FC output, x water humidity outside (humidity in the cell and in the condenser is considered 100%)

Collectable ratio (CR) is (VP1-VP2)/(VP1-xVP0)

Ideal ratio

We can hope to have a condenser at ambient temperature at FC exit, so VP2=VP0

VP0/VP1 being small, it follows:

CR ~ 1-(1-x)VP0/VP1

Rankine formula gives VP=exp(a-b/T), with a=13.7 and b=5120, VP in bars, T in K

Hence, **CR** ~ **1-(1-x)exp(b(1/T1-1/T0))**

With Fuel cell temperature (Axane case) T1~62.5C :

Ratio with condenser at 40C (Temperature of the humidified in case of axane FC)

Data and reference index

Mass, me	elting p	point, density	of sele	ected con	npounds			
	mass (Amu)	ref	Melting point (C)	conditions	ref	dens. (g/ml)	conditions	ref
Н	1.008	sargent-welch scientific of	company					
B (amorp)	10.810	sargent-welch scientific company	2,300.0 00		chem phys handb	2.370		chem phys handb
N	14.007	sargent-welch scientific of	company					
0	15.999	sargent-welch scientific of	ompany					
Na	22.990	sargent-welch scientific company	97.810		chem phys handb	0.970		chem phys handb
Li	6.941	sargent-welch scientific company	180.540		chem phys handb	0.534	20C	chem phys handb
H2	2.016							
H2Olia	18.015		100.000			1.000		
LiH	7.949		680.000		chem phys handb	0.820		chem phys handb
LIOH	23.948		450.000		chem phys handb	1.460	III Merck gives 2.54!	chem phys handb
Li2O	29.881		>1700		chem phys handb	2.013	25.2C	chem phys handb
Li2O2	45.881		195.000	dec to Li2O				
NaH	23.998		425.000	dec, chem phys hand gives a value of 800C!	Merck	1.396	IIICPH gives 0.92	Merck
NaOH	39.997		318,400		chem phys handb	2.130		chem phys handb
Na2O	61.979		1,275.0 00	sub	chem phys handb	2.270		chem phys handb
Na2O2	77.978		460.000	dec	chem phys handb	2.805		chem phys handb
NaBH4	37.831		400.000	dec	chem phys handb	1.074		chem phys handb
NaBO2	65.799		966.000		chem phys handb	2.464		chem phys handb
Na2B4O7 (crys)	201.21 5		741.000		chem phys handb	2.367		chem phys handb
BHO2 (monocli)	43.817		236.000		chem phys handb	2.486		chem phys handb
BH3O3 (crys)	61.832		169.000		chem phys handb	1.435		chem phys handb
BO2 (gas)	42.809							
B2O3 (crys)	69.618		45.000	trans to glass	chem phys handb	2.460		chem phys handb
LI3N	34.830		840-850	in N2	chem phys handb	1.300		http://www.espimetals .com/msds's/lithiumni tride.pdf
Li2HN			400<>8 00	deduced from n	ieighbourgs			
LiH2N (cryst)			380-400		chem phys handb	1.178		chem phys handb
NH3(g)	17.030		-77.700	boil -33.5		0.600	at 300K under pressure	http://www.engineerin gtoolbox.com/ammon ia-d_971.html
Mg	24.305	sargent-welch scientific company	648.800		chem phys handb	1.740	5C	chem phys handb
MgH2	26.321		280.000	diss, vac	chem phys handb	1.450		Merck
Mg(OH)2	58.320		350.000		chem phys handb	2.360		chem phys handb
MgO	40.304		2,852.0 00		chem phys handb	3.580	25C	chem phys handb
Ве	9.012	sargent-welch scientific company	1,278.0 00		chem phys handb	1.850	20C	chem phys handb
BeH2	11.028		125.000	dec	chem phys handb	0.637	a verifier	http://www.brushwell man.com/EHS/MSDS /M19.pdf
Be(OH)2	43.027					1.920		Merck
BeO	25.012		2,530.0 00		chem phys handb	3.010		chem phys handb
AI	26.982	sargent-welch scientific company	660.370		chem phys handb	2.702		chem phys handb
AIH3 (s)	30.005					1.580		http://www.armadilloa erospace.com/n.x/Ar madillo/Home/News? news_id=140
AI(OH)3 (s)	78.003		300.000	decomp H2O release	chem phys handb	2.420		chem phys handb
Al2O3 (s)	101.96 1		2,072.0 00		chem phys handb	3.965	25C	chem phys handb
AIOOH	59.988			H2O release, trans to Al2O3	chem phys handb	3.010		chem phys handb
Al2O (gas)	69.962							

Hydrides stabililies and solubilities												
	Enthalpy of formation (kJ/mol) at 298.15K	Entropy standard cond. (J/molK)	Gibbs free energy G=H-TS, (kJ/mol)	Melt (C)	boil	cond / ref	Dec (C)	cond / ref	sol in H2O (g/100 cc) at 100 C	ref cond		
H2O (I)	-285.830	69.950	-306.686									
H2O (g)	-241.830	188.726	-298.099									
LiOH (crys)	-484.900	42.800	-497.661	450.00 0			924	CPHandb	17.5	CPHandb		
Li2O (cry)	-597.900	37.600	-609.110									
LIOH -> 1/2Li2O + 1/2H2Olig	43.035	10.975	39.763									
Li2O2 (cry) peroxide	-634.300	37.600	-645.510									
NaOH (crys)	-425.600	64.500	-444.831	318.4	1390	CPHandb	none		347	CPHandb		
Na2O (cry)	-414.200	75.100	-436.591									
NaOH -> 1/2Na2O + 1/2H2Oliq	75.585	8.025	73.192									
Na2O2 (cry) peroxide	-510.900	95.000	-539.224									
Be(OH)2	-902 500	51 900	-917 974	2	2		2			"very slightly		

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

								soluble", mercks
BeO (crys)	-609.400	13.800	-613.514					
Be(OH)2 -> BeO + H2Oliq	7.270	31.850	-2.226					
Mg(OH)2 (s)	-924.660	63.180	-943.497	none	350		0.004	CPHandb
MgO (s)	-601.600	26.950	-609.635					
Mg(OH)2 -> MgO + H2Oliq	37.230	33.720	27.176					
Al(OH)3 (s)	MISSING DATA!				300		i	CPHandb
Al2O3 (crys)	-1,675.70 0	50.900	-1,690.87 6					
AI(OH)3 -> 1/2AI2O3 + 3/2H2O								
AI(OH)3 -> AIOOH + H2O								
Al2O (gas)	-130.000	259.400	-207.340					
AIOOH						to H2O+Al2 O3	i	CPHandb

LiOH and LiNH system DA	ATA				
	Enthalpy of formation (kJ/mol) at 298.15K	ref or Enthalpy step	Entropy standard cond. (J/molK)		Gibbs free energy G=H-TS, (kJ/mol)
H2O (I)	-285.830	CHM	69.950	chem phys handb	-306.686
H2O (g)	-241.830	CHM	188.726	chem phys handb	-298.099
	0.000	chem phys handb	29.100	chem phys handb	-8.676
H2 (g)	0.000	chem phys handb	130 700	chem phys handb	-38.968
N2(g)	0.000	chem phys handb	191.600	chem phys handb	-57.126
O2 (g)	0.000	chem phys handb	205.000	chem phys handb	-61.121
CO	-110.500	CHM	197.500	chem phys handb	-169.385
CO2	-393.500	CHM charachus baadh	213.676	chem phys handb	-457.207
H2O2 (IIq)	-187.800	chem phys handb	109.600	cnem pnys nandb	-220.477
H2 Combustion energy	enthalpie				
H2+1/2O2->H2Oliq	285.830		163.250		237.157
Avogadro Energy density MJ/kg Energy density kWh/kg	########### 141.795 39.387	Amu (kg)	0.000		117.649 32.680
LiOH system	00.500	ahana nhua handh	20.000	ahana ahua handh	06 462
	-90.500	chem phys handb	<u>∠0.000</u> 42.800	chem phys handb	-90.403
Li2O (crv)	-597,900	chem phys handb	37.600	chem phys handh	-609,110
Li2O2 (cry) peroxide	-634.300	chem phys handb	37.600	approx = Li2O	-645.510
LiH + H2Oliq + 1/2O2	-376.330	-90.500	192.450		-433.709
Li(OH) + H2 + 1/2O2 Li(OH) + H2Olio	-484.900	-108.570	276.000		-567.189
$Li + 1/4 \Omega^2 + 1/2 H^2\Omega_{max} + H^2\Omega_{lig}$	-406 745	363 985	244 663		-479 691
Li + 1/402 +3/2 H2Olig	-428.745	-22.000	185.275		-483.985
Li + 1/2H2 + 1/2O2 + H2Oliq	-285.830	142.915	266.900		-365.406
	705.005	1	100 110		700.000
1/2L12O+1/2H2Ogas+H2Oliq	-705.695		183.113		-760.290
1/2E1202+1/2112+11201iq	-002.900		134.100		-040.923
Li system					
2Li + 2H2Oliq + 1/2O2	-571.660	-44.000	300.600		-661.284
2Li(OH) + H2 + 1/2O2	-969.800	-398.140	318.800		-1,064.850
2Li(OH) + H2Oliq 2Li + 1/2 O2 + H2Ogas + H2Olig	-1,255.650	727 970	419.376		-1,302.007
	021.000	121.010	410.010		002.007
Li2O+H2Ogas+H2Oliq (decomposition a haute T)	-1,125.560		296.276		-1,213.895
Li2O2+H2+H2Oliq	-920.130		238.250		-991.164
NH3 system					
NH3(g)	-45.900	NIST/chem phys handb	192.800	NIST/chem phys handb	-103.383
Li3N	-164.560	NIST	62.660	NIST	-183.242
Li2HN	-172.030	deduction des valeurs voisines	62.660	deduction des valeurs voisines	-190./12
	-179.000	handbook 5-19	02.000	valeurs voisines	-190.102
3Li +1/2N2 + 3H2 +3/2O2	0.000		882.700		-171.496
NH3(g) + 3LiH +3/2O2	-317.400	42,400	560.300		-392.772
LINFIZ + ZLIFF + FIZ + 3/202	-300.300	-43.100 97.970	651 560	<u> </u>	-430.070
Li3N + 3H2 +3/2O2	-164.560	97.970	762.260		-300,147
Li3N + 3H2Oliq	-1,022.050	-857.490	272.510		
1/2Li2NH+1/2NH3+2LiH+H2+3/2O2	-289.965		605.930		-378.942
1/2Li2NH+1/2LiNH2+3/2LiH+3/2H2+3/2O2	-311.515		596.210		-397.594
31 i +1/2N2 + 3/2H2+3/4O2	0.000		532 900		-113 044
NH3(g) + 3Li+3/4O2	-45.900		433.850		-129,412
LiNH2 + 2Li + 1/2H2+3/4O2	-179.500	-133.600	339.960		-235.019
Li2NH + Li + H2+3/4O2	-172.030	7.470	376.210		-238.356
Li3N + 3/2H2 +3/4O2	-164.560	7.470	412.460		-241.694
LIJN + 3/2H2UIIQ 1/2Li2NH+1/2NH3+2Li+1/2H2 +3/4O2	-093.305	-428.745	107.585		-183 884
1/2Li2NH+1/2LiNH2+3/2Li+3/4H2 +3/4O2	-175.765		358.085		-236.687

NaOH and NaBH4 system DATA Enthalpy of formation (ki/moi) at 296.15K Entropy standard cond. (J/molK) 69.950 188.726 29.100 51.300 130.700 Gibbs Enthalpy ref step o Gibbs energy G=H-TS, (kJ/mol) -306.686 -298.099 298.15K -285.830 -241.830 0.000 0.000 0.000 chem phys handb chem phys handb chem phys handb CHM CHM H2O (I) H2O (g) chem phys handb chem phys handb chem phys handb -8.676 Li (cry -15.295 chem phys handb chem phys handb Na (crys) H2 (g)

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

N2(g)	0.000	chem phys handb	191.600	chem phys handb	-57.126
O2 (g)	0.000	chem phys handb	205.000	chem phys handb	-61.121
CO	-110.500	CHM	197.500	chem phys handb	-169.385
CO2	-393.500	CHM	213.676	chem phys handb	-457.207
H2O2 (liq)	-187.800	chem phys handb	109.600	chem phys handb	-220.477
H2 Combustion energy	a mille a la i a		1	1	1
	enthalple		163 250		237 157
Avogadro	6.022E+23	Amu (ka)	0.000		237.137
Energy density k.l/kg	1 418E+05	And (kg)	0.000		117 649 098
Energy density Wh/kg	39,387.457				32,680.305
NaOH system					
NaH (crys)	-56.300	chem phys handb	40.000	chem phys handb	-68.226
NaOH (crys)	-425.600	chem phys handb	64.500	chem phys handb	-444.831
Na2O (cry)	-414.200	chem phys handb	75.100	chem phys handb	-436.591
Na2O2 (cry) peroxide	-510.900	chem phys handb	95.000	approx = Na2O	-539.224
NaH + H2ONag + $1/2O2$	-342 130	-56 300	212/150		-405 472
$N_{2}(OH) + H_{2} + 1/2O_{2}$	-425 600	-83 470	297 700		-514 359
Na(OH) + H2ONag	-711 /30	-285.830	134 450	-	-751 516
$Na + 1/4 \Omega^2 + 1/2 H^2 \Omega_{max} + H^2 \Omega_{max}$	-406 745	304 685	266 863		-486 310
Na + 1/402 + 3/2 H20Nag	-428 745	-22 000	207.475		-490 604
Na + 1/2H2 + 1/2O2 + H2ONag	-285.830	142.915	289,100		-372.025
1/2Na2O+1/2H2Ogas+H2ONaq	-613.845		201.863		-674.030
1/2Na2O2+1/2H2+H2ONaq	-541.280		182.800		-595.782
No outom					
2Na + 2H2ONag + 1/2O2	-571 660	-44 000	345 000		-674 522
2Na(OH) + H2 + 1/2O2	-851 200	-279 540	362 200		-959 190
2Na(OH) + H2ONag	-1.137.030	-285,830	198.950		-1.196.347
2Na + 1/2 O2 + H2Ogas + H2ONag	-527.660	609.370	463.776		-665.935
Na2O+H2Ogas+H2ONaq	-941.860		333.776		-1,041.375
Na2O2+H2+H2ONaq	-796.730		295.650		-884.878
NaBH4 system					
NaBH4 (crvs)	-188.600	chem phys handb	101.300	chem phys handb	-218.803
NaBO2 (crvs)	-977.000	chem phys handb	73.500	chem phys handb	-998.914
Na2B4O7 (crys)	-3,291.100	chem phys handb	189.500	chem phys handb	-3,347.599
BHO2 (monocli)	-794.300	chem phys handb	38.000	chem phys handb	-805.630
BH3O3 (crys)	-1,094.300	chem phys handb	88.800	chem phys handb	-1,120.776
BO2 (gas)	-300.400	chem phys handb	229.600	chem phys handb	-368.855
B2O3 (crys)	-1,273.500	chem phys handb	54.000	chem phys handb	-1,289.600
1/4NaBH4 + 1/2H2Olig + 1/2O2	-190.065	340 015	162 800		-238 604
$H_2 + 1/4N_8BO2 + 1/2O2$	-244 250	-54 185	251 575		-319 257
$H_2Olig + 1/4NaBO2$	-530.080	-285 830	88.325		-556 414
	1				
MgH2 BeH2 and A	IH3 system	DATA			
	Enthalpy of	ref or Enthalpy step	Entropy		Gibbs fre
	formation (kJ/mol)		standard		energy
	at 298.15K		cond.		G=H-ŤS,
		1	(J/molK)		(kJ/mol)

	at 298.15K		cond.		G=H-TS,
			(J/molK)		(kJ/mol)
H2O (I)	-285.830	CHM	69.950	chem phys handb	-306.686
H2O (g)	-241.830	CHM	188.726	chem phys handb	-298.099
Li (s)	0.000	CHM	29.100	chem phys handb	-8.676
Na (crys)	0.000	chem phys handb	51.300	chem phys handb	-15.295
H2 (g)	0.000	CHM	130.700	chem phys handb	-38.968
N2(g)	0.000	chem phys handb	191.600	chem phys handb	-57.126
O2 (g)	0.000	CHM	205.000	chem phys handb	-61.121
CO	-110.500	CHM	197.500	chem phys handb	-169.385
CO2	-393.500	CHM	213.676	chem phys handb	-457.207
NH3(g)	-45.900	NIST/chem phys handb	192.800	NIST/chem phys handb	-103.383

Mg/H/O family Mg (crys) MgH2 (s) Mg(OH)2 (s) MgO (s) 0.000 32.700 -9.750 chem phys handb chem phys handb -76.150 -924.660 -601.600 31.030 63.180 26.950 -85.402 -943.497 -609.635 NIST NIST NIST chem phys handb chem phys hand 1/2MgH2 + H2Oliq + 1/2O2 1/2Mg(OH)2+H2+1/2O2 1/2Mg(OH)2+H2O 1/2MgO+3/2H2Oliq 1/2MgO+3/2H2Oliq 1/2Mg+1/4O2+3/2H2O 1/2Mg+1/2H2+1/2O2+H2O -323.905 -462.330 -748.160 -729.545 -428.745 -38.075 -138.425 -285.830 18.615 300.800 142.915 187.965 264.790 101.540 118.400 172.525 254.150 -379.947 -541.277 -778.434 -764.846 -480.183 -285.830 -361.605

hydrogenisation activated by Ni Be/H/O family Be (crys) BeH2 (crys) Be(OH)2 BeO (crys) 0.000 -76.150 -902.500 -609.400 chem phys handb approx =MgH2 chem phys handb chem phys handb 9.500 -2.832 -85.402 -917.974 -613.514 31.030 51.900 13.800 approx =MgH2 chem phys hand chem phys handb chem phys handb 1/2BeH2 + H2Oliq + 1/2O2 1/2Be(OH)2+H2+1/2O2 1/2Be(OH)2+H2O 1/2BeO+3/2H2Oliq 1/2Be+1/4O2+3/2H2O -323.905 -451.250 -737.080 -733.445 -428.745 -38.075 -127.345 -285.830 3.635 304.700 187.965 259.150 95.900 111.825 160.925 -379.947 -528.516 -765.673 -766.786 -476.725 1/2Be+1/2H2+1/2O2+H2O 142.915 242.550 -358.146 -285.830 AI/H/O family 46.000 ------

All IS (CI y3)	-40.000	chem phys handb			
AI(OH)3 (s)	MISSING DATA!				
Al2O3 (crys)	-1,675.700	chem phys handb	50.900	chem phys handb	-1,690.876
Al2O (gas)	-130.000	chem phys handb	259.400	chem phys handb	-207.340
AI (crys)	0.000	chem phys handb	28.300	chem phys handb	-8.438
AIOOH					

AIR LIQUIDE
RESEARCH AND DEVELOPMENT

Family	Technique	kWh/kg	MJ/kg	kWh/l	MJ/l	kg/l systeme	ref and hypothesis
H2 competitors	Gasoline no	1.220E+01	4.392E+01	9.700E+00	3.492E+01	7.951E-01	xtronics.com
	Gasoline 451	8.540E+00	3.074E+01	9.700E+00	3.492E+01		Reservoir suppose 30% du
	Methanol no	6.400E+00	2.304E+01	4.600E+00	1.656E+01	7.188E-01	xtronics.com
	Ethanol no	7.850E+00	2.826E+01	6.100E+00	2.196E+01	7.771E-01	xtronics.com
	Ethanol 451 tank	5.495E+00	1.978E+01	6.100E+00	2.196E+01		Reservoir suppose 30% du poid total
	Compete to ethanol frontier (H2 double efficiency)	0.000E+00	0.000E+00	3.050E+00	1.098E+01		considering half motor efficiency for ethanol
		2.748E+00	9.891E+00	3.050E+00	1.098E+01		
Liquid 112	Liquid II2 no	2.748E+00	9.891E+00	0.000E+00	0.000E+00	6 6675 02	without include a come
	tank	5.900E+01	1.404E±02	2.000E+00	9.300E+00	0.00/E-02	Superse: tenk 80% de le
	Cryotank	7.800E+00	2.0081-01	2.0001100	9.5001-00	5.555E-01	masse
High Press 1,150,350,700bar no tank	I bar no tank	3.900E+01	1.404E+02	2.700E-03	9.720E-03	6.923E-05	xtronics.com
	150bar no tank	3.900E+01	1.404E+02	4.050E-01	1.458E+00	1.038E-02	xtronics.com
	350bar no tank	3.900E+01	1.404E+02	8.505E-01	3.062E+00	2.181E-02	deviation GP 10%
High Prose 1 150 350 700har CE	700bar no tank	3.900E+01	1.404E+02	1.323E+00	4.763E+00	3.392E-02	deviation GP 30%
tank 95% mass	Ibar	1.950E+00	7.020E+00	2.700E-03	9.720E-03	1.385E-03	5% qqsoit pression, densit
	150bar	1.950E+00	7.020E+00	4.050E-01	1.458E+00	2.077E-01	volumique 100%
	350 bar	1.950E+00	7.020E+00	8.505E-01	3.062E+00	4.362E-01	-
Matal Hudwida CE tank light matal	/00bar	1.950E+00	7.020E+00	1.323E+00	4.763E+00	0.785E-01	aan diti ana meashaa dhun
(3.5kg/l) 2% absorb , 50% full	1001	7.802E-01	2.809E+00	1.500E+00	4.919E+00	1./31E+00	article publie par Toyota
	1500ar 250 bor	8.00/E-01	2.882E+00	1.568E+00	5.643E+00	1.958E+00	(mater res soc symp proc 884F 2005)
	700bar	8 345E-01	2.948E+00	2.027E+00	7 295E+00	2.180E+00	004E 2005)
(hypothetical) CF tank light filler	1bar	1.949E+00	7.017E+00	3.414E+00	1.229E+01	1.751E+00	materiau hypothetique
(J.5Kg/1) 576 absorb , 5676 fun	150bar	1 847E±00	6.648E+00	3.615E+00	1 301E+01	1 958E+00	
	350 bar	1.755E+00	6.320E+00	3.838E+00	1.382E+01	2.186E+00	
	700bar	1.678E+00	6.039E+00	4.074E+00	1.467E+01	2.428E+00	
(hypothetical) CF tank heavy filler (7kg/l) 2% absorb, 50% full	1bar	7.801E-01	2.808E+00	2.731E+00	9.833E+00	3.501E+00	materiau hypothetique
	150bar	7.909E-01	2.847E+00	2.933E+00	1.056E+01	3.708E+00	
	350 bar	8.016E-01	2.886E+00	3.155E+00	1.136E+01	3.936E+00	
	700bar	8.117E-01	2.922E+00	3.392E+00	1.221E+01	4.178E+00	
2Li+2H2O->H2+2LiOH	start	2.489E+00	8.961E+00	1.804E+00	6.494E+00	7.247E-01	Data de Alldata.xls
LiH+H2O->H2+LiOH	start	9.988E+00	3.596E+01	8 191E+00	2 949E+01	8 200E-01	-
	end	3 315E+00	1 194E+01	4 840E+00	1 743E+01	1 460E+00	-
2Na+2H2O->H2+2NaOH	start	1.241E+00	4.466E+00	1.214E+00	4.369E+00	9.783E-01	
	end	9.925E-01	3.573E+00	2.114E+00	7.611E+00	2.130E+00	
NaH+H2O->H2+NaOH	start	3.309E+00	1.191E+01	4.619E+00	1.663E+01	1.396E+00	
	end	1.985E+00	7.146E+00	4.228E+00	1.522E+01	2.130E+00	
1/4NaBH4 + 1/2H2Oliq -> H2+1/4NaBO2	start	8.395E+00	3.022E+01	9.016E+00	3.246E+01	1.074E+00	
	end	4.827E+00	1.738E+01	1.189E+01	4.281E+01	2.464E+00	
2Li+2/3NH3(g)->H2+2/3Li3N	start	3.146E+00	1.133E+01	1.768E+00	6.363E+00	5.618E-01	-
L :IL : 1/2NIL2(a) >1/2 : 1/2L :2N	end	5.419E+00	1.231E+01	4.445E+00	1.600E+01	1.300E+00	-
LIN+1/31(N13(g)->12+1/3L131(end	5.827E+00	2.098E+01	4.143E+00 8.890E+00	3 201E+01	1.300E+00	-
1/2MgH2 + H2Oliq ->	start	6.033E+00	2.172E+01	8.748E+00	3.149E+01	1.450E+00	-
112+1/2Mg(UII)2	end	2 723E+00	9 802E±00	6.426E+00	2 313E+01	2 360E+00	4
1/2BeH2 + H2Olia ->	start	1.440E+01	5.184E+01	9.167E+00	3.300E+01	6.366E-01	1
H2+1/2Be(OH)2	and	2.601E+00	1 22012 1 01	7.086E100	2.551E101	1.020E+00	-
$1/3AH3 + H2O \rightarrow 1/3A(OH)3 +$	start	7.938E+00	1.529E+01	1.060E+00	2.331E+01 4.515E+01	1.920E+00	-
H2	start	7.7501-00	2.0501-01	1.2541.01	4.5151-01	1.5001.00	
	end	3.054E+00	1.099E+01	7 390E±00	2.660E+01	2.420E+00	1

Energy Efficiency Comparison												
	Li + H2O	LiH + H2O non h recycl	LiH + H2O h recycl	Na + H2O	NaH + H2O non h recycl	NaH + H2O h recycl	NaBH4 + H2O	Li + NH3	LiH + NH3	MgH2 + H2O h recycl	BeH2 + H2O h recycl	AlH3 + H2O h recycl
Effi. on filling	0.940	0.778	1.000	0.928	0.825	1.000	0.000	0.000	0.849	0.000	0.000	
Loss on filling (kJ/mol)	0.060	0.222	0.000	0.072	0.175	0.000	1.000	1.000	0.151	1.000	1.000	
Effi. on release	0.418	0.725	0.725	0.506	0.774	0.774	0.841	1.000	1.000	0.674	0.692	
Loss on release (kJ/mol)	0.547	0.214	0.275	0.459	0.186	0.226	0.000	0.000	0.000	0.000	0.000	
Effi. On FC	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400
Loss on FC	0.236	0.338	0.435	0.281	0.383	0.464	0.000	0.000	0.509	0.000	0.000	
Effi. of e motor	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950
Loss on e motor	0.008	0.011	0.014	0.009	0.013	0.015	0.000	0.000	0.017	0.000	0.000	
Usable energy	0.149	0.214	0.275	0.178	0.243	0.294	0.000	0.000	0.323	0.000	0.000	
Total loss	0.851	0.786	0.725	0.822	0.757	0.706	1.000	1.000	0.677	1.000	1.000	
Effi. fillingXrelease	0.393	0.564	0.725	0.469	0.639	0.774	0.000	0.000	0.849	0.000	0.000	

Element Prices and availabilities				
Li supply	\$/kg	ref		
LiOH.H2O cheapest (\$/kg)	2.37	China -> US custom value 2004. NOTE: Price decrease possible in 2006 due to new SQM factory in Chile		
Corresponding Li Price (\$/kg)	14.32823945			
LiCO3 cheapest (\$/kg)	1.45	Chile->US custom value 2004		
Corresponding Li Price (\$/kg)	13.9858882			
Identified world reserves of Li as ? (kg)	1.300E+10	2006 data, Bolivia, Chile, China are main		
Annual production of Li (kg), brine -> LiCO3 mostly	2.000E+07	2006 data, Chile is main		

Hydrogen storage through the reaction of light hydrides: Technical assessment Thomas Laude, ALL

Na sunnly		ref
NaCO3 (soda ash) cheanest (\$/kg)	0.11	US_>world mean custom value 2004
Corresponding Na Price (\$/kg)	0.307110617	ob - work mean eastern varie 2004
Identified world reserves of NaCO3 (kg)	8 100E+13	2006 data LIS is main
Corresponding Na mass (kg)	2 244E+13	
A neural production of NaCO2 (kg)	4.020E±10	2006 data China and US ara main
Alliluar production of NaCO3 (kg)	4.030E+10	2000 data, China and CS are main From http://www.yastealchemicals.com/newcaustic.html.fluctuation.from 30 to 500 \$/tonl_mostly.brine
NaOH cheapest (kg/\$)	4.000E-01	electrolvsis
Corresponding Na Price (\$/kg)	0.695902566	
NaCl cheapest (\$/kg)	7.000E-03	2006 data salt in brine
Corresponding Na Price (\$/kg)	0.017794737	
Identified world reserves of NaCl (kg)	inexhaustible	
Annual production of NaCl (kg)	2.100E+11	continental only, 2006 data
Na2SO4 (sodium sulfate) cheapest (\$/kg)	1.477E-01	2005 data
Corresponding Na Price (\$/kg)	0.456287475	
Identified world reserves of Na2SO4 (kg)	4.6E+12	
Corresponding Na mass (kg)	1.48912E+12	
Mg supply		ref
MgO cheapest (\$/kg)	0.400139024	US mean price 2004
Corresponding Mg Price (\$/kg)	0.663534384	
Mg(OH)2 cheapest (\$/kg)	8.818E-01	US mean price 2004
Corresponding Mg Price (\$/kg)	2.115965903	
MgCl2 cheapest (\$/kg)	2.811E-01	US mean price 2004
Corresponding Mg Price (\$/kg)	1.101123209	
Mg as Mg cheapest (\$/kg)	3.858E+00	2004 data
Identified world reserves of Mg as MgCO3	1 200E±12	2006 data for MaCO2 (magnesita) only (Ma(OH)2 also quailable from see)
(kg)	1.200E+13	2000 data for MgCOS (magnesite) only (Mg(OT)2 also available from sea)
	-	
Be supply		ref
BeO and Be(OH)2 cheapest (\$/kg)	11.32	US custom import price 2004
Corresponding Be Price (\$/kg)	54.04405306	assumed Be(OH)2
Be unwrought cheapest (\$/kg)	1.400E+02	US custom import price 2004
Identified world reserves of Be (kg)	8.000E+07	2005 data
Annual production of Be (kg)	1.120E+05	2004 data
Alonnahy		and the second se
Al supply	0.271	iei
Ai2O5 circapest (\$/kg)	0.3/1	US custom import price 2004
Identified world recercice of A12O2 (Ire)	0./00982///	abuminium avida 2005 data
German and the Almost (las)	1.190E+09	alummum oxide 2003 data
Corresponding AI mass (kg)	6.298E+08	
AI cneapest (5/Kg)	1.940E+00	US custom import price 2004
identified world reserves of AI (kg)	3.330E+10	2003 data
B supply		rof
Na2B4O7 5H2O (borax pentahydrata)		
cheanest (\$/kg)	0.4	US price 2005
Corresponding B Price (\$/kg)	2 694616096	
Identified world reserves (kg)	4 100E+11	2005 data
terres (ng)		
NaBH4 cheapest	12	Estimation K Barral AL ref 238-2004 Hypothetical minimal price

Table of contents

Page	
2	Abstract
3	1. Introduction
5	2. How we select the reactions
5	2.1. Available reactions
6	2.2. Release reactions with water
6	2.2.1. Reactions of elements with water
8	2.2.2. Reactions of diatomic hydrides with water
9	2.3. Recycling by melted salt electrolysis
11	3. Li/O/H based systems
11	3.1. Generalities
12	3.2. Reaction pathway
13	3.3. Efficiency
16	3.4. Storage densities
16	3.5. Technical feasibility
18	4. Na/O/H based systems
18	4.1. Generalities
18	4.2. Reaction pathway
19	4.3. Energy Efficiency
20	4.4. Storage densities
20	4.5. Technical feasibility
20	5. Na/B/O/H based systems (NaBH4)
20	5.1. Generalities
21	5.2. Reaction pathway
22	5.3. Storage densities
22	6. Higher hydrides (MH2, MH3)
22	6.1. Mg/O/H based systems
24	6.2. Be/O/H based systems
25	6.3. Al/O/H based systems
25	7. Li/N/H based systems
25	7.1. Generalities
26	7.2. Reaction pathways
28	7.3. Storage densities
28	7.4. Technical feasibility
30	8. Comparison
30	8.1. Energy density
31	8.2. Storage efficiency
33	8.3. Element prices and availabilities
36	9. Conclusions
38	Related Bibliography
41	Annex: How much water can be recycled from a fuel cell?
42	Data and reference index